Stochasticity in radiative polarization of ultrarelativistic electrons in an ultrastrong laser pulse

Ren-Tong Guo,1,2,* Yu Wang,1,2,* Rashid Shaisultanov,2 Feng Wan,1 Zhong-Feng Xu,1 Yue-Yue Chen,3,2,† Karen Z. Hatsagortsyan2,1,‡ and Jian-Xing Li1,2,§

1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
2Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
3Department of Physics, Shanghai Normal University, Shanghai 200234, China

(Received 25 March 2020; accepted 1 September 2020; published 24 September 2020)

Stochastic effects in the spin (de)polarization of an ultrarelativistic electron beam during photon emissions in a counterpropagating ultrastrong focused laser pulse in the quantum radiation reaction regime are investigated. We employ a Monte Carlo method to describe the electron dynamics semiclassically and photon emission and electron radiative polarization quantum mechanically. While in the latter the photon emission is inherently stochastic, we are able to identify its imprints in comparison with the semiclassical stochasticity-free method of radiative polarization applicable in the quantum regime. With an initially-spin-polarized electron beam, the impact of stochastic effects of photon emissions on the spin observable is demonstrated in the dependence of the depolarization degree on the electron scattering angle and the final electron energy (spin stochastic diffusion). With an initially unpolarized electron beam, the stochastic effects on the spin are exhibited in enhancing the known effect of splitting of the electron beam along the propagation direction into two oppositely polarized parts by an elliptically polarized laser pulse. The considered stochastic effects for the spin are observable with currently achievable laser and electron-beam parameters.

DOI: 10.1103/PhysRevResearch.2.033483

I. INTRODUCTION

The modern laser technique is advancing rapidly, and the state-of-the-art ultrafast ultrashort laser pulses can achieve peak intensities of about 10^{22} W/cm2, with a duration of about tens of femtoseconds and an energy fluctuation on the order of 1% [1–7]. In such strong fields QED processes become nonlinear [8]. The large classical nonlinearity parameter in strong fields, which assumes that the electron energy gain in the laser field over the Compton wavelength is larger than the laser photon energy, gives access to multiphoton QED processes. Furthermore, the large quantum nonlinearity parameter in strong fields, which assumes that the maximum field in the electron rest frame is comparable to the QED critical field, allows for the large quantum recoil in photon emissions and sizable probability for electron-positron pair production. Thus, the strong laser fields open an avenue for investigation of nonlinear QED processes, beginning with the famous SLAC E-144 experiment [9,10] and recently realized in all optical setups [11–13]. The fundamental processes of nonlinear QED are nonlinear Compton scattering, multiphoton Breit-Wheeler (BW) processes, and nonlinear Bethe-Heitler (BH) processes. In nonlinear Compton scattering an electron can absorb millions of laser photons to emit a high-energy γ photon [14–16]. In the multiphoton BW process a γ photon interacting with the laser fields generates an electron-positron pair [17]. In the nonlinear BH process an electron-positron pair is created in the interaction of a highly intense laser field with a nuclear Coulomb field [18]. There are far-reaching plans to investigate nonlinear QED processes during ultrastrong laser-plasma interactions [19].

Radiation reaction effects were discovered long ago in classical electrodynamics [20–22], as well as in the quantum domain [18], and recently have attracted wide attention due to the possibility of observing those effects directly in radiative processes in laser fields [23]. Thus, recently, classical and quantum signatures of the radiation reaction in electron energy losses have been identified in the experiments of an ultrarelativistic electron-beam collision with strong laser fields [24,25]. Quantum features of the radiation reaction originate from the discrete and probabilistic character of a photon emission, which gives rise to stochasticity effects. The latter is responsible for broadening of the energy spread of an electron beam in a plane laser field [26–28], causes electron stochastic heating in a standing laser field [29], results in quantum quenching of radiation losses in short laser pulses [30], disturbs the angular distribution of radiation [31,32], and brings about the so-called electron straggling effect [33,34], when the electron propagates a long distance without radiation, resulting in an increase of the yield of high-energy photons.

Polarization of electrons and photons adds another dimension to the investigation of nonlinear QED and radiation reaction processes in laser fields. Nonlinear QED processes

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
with polarized electrons and photons in the initial and final states have been studied less, but offer a more promising direction of investigation. In particular, the polarized high-energy γ-ray interaction with a quantum vacuum promises an enhanced signal for the coveted detection of vacuum birefringence [35–39]. Since the cross section of nonlinear Compton scattering is electron spin and photon polarization dependent [40], highly polarized γ rays can be generated by initially spin-polarized electrons via nonlinear Compton scattering [41]. Similarly, the cross section of nonlinear BW pair production relies on photon polarization [42] and consequently the intermediate photon polarization should be involved in simulations of nonlinear BW pair production in laser and electron-beam collisions [43,44].

The radiation reaction can have an impact on the electron spin dynamics, proved long ago for synchrotron radiation. It may induce polarization of the unpolarized electron beams (the Sokolov-Ternov effect) [45–48] or depolarization of the initially polarized beam [49,50]. Recently, there have been several proposals on how to use ultrastong laser fields for generation of polarized relativistic electron beams [51–59]. Polarized electrons are commonly generated by accelerating nonrelativistic polarized electrons, obtained from photocathodes [60], spin filters [61], and beam splitters [62], by conventional accelerators [63] and laser wake-field accelerators [64,65], or by radiative polarization in storage rings [66,67], in which the polarization typically requires a period from minutes to hours because of the modest magnetic fields in storage rings on the order of tesla. In contrast, laser beams have a potential to polarize electrons within tens of femtoseconds. In particular, the possibilities for creation of ultrarelativistic high-polarization high-density electron and positron beams in femtoseconds via utilizing an asymmetric spin-dependent radiation reaction in elliptically polarized laser fields are shown in [54–56] and using two-color laser fields in [57–59]. While polarization-resolved probabilities for nonlinear QED processes in a monochromatic plane-wave laser field have been calculated in Refs. [68,69], they yield cumbersome expressions for the probabilities, which are impractical to use in Monte Carlo and particle-in-cell simulations. More simple formulas for probabilities of polarization-resolved processes have been advanced in Refs. [54,55] using local constant field approximation and developing appropriate stochastic algorithms to treat polarization-resolved nonlinear QED processes in ultrastong laser–electron-beam interactions. The methods put forward in these works create an opportunity for detailed investigation of all features of the radiative polarization and depolarization processes in ultrastong focused laser fields, as well as in multiple laser-beam configurations. Usually, a full quantum mechanical study of the radiation reaction includes all quantum effects, such as the photon recoil, stochasticity, and interferences, which makes it difficult to single out the specific radiation reaction signatures of the stochasticity.

In this work, the impact of stochastic effects due to discrete photon emissions on the radiative (de)polarization of an ultrarelativistic electron-beam colliding head-on with an ultrastong laser pulse is investigated in the quantum radiation reaction regime (see the interaction scenarios in Fig. 1). We employ a Monte Carlo (MC) method to describe spin-resolved electron dynamics in a strong laser field, stochastic photon emissions, and corresponding stochastic radiative spin evolution. To elucidate the role of stochastic spin effects, we develop an auxiliary semiclassical stochasticity-free (SF) method for the description of the spin-dependent radiation reaction in electron dynamics. For this purpose we use the Baier-Katkov-Strakhovenko equation for the expectation value of the electron spin [48,70], which is a generalization of the Thomas-Bargmann-Michel-Telegdi (TBMT) equation [71–73], including the radiation reaction for the electron spin. The latter is supplemented with the modified Landau-Lifshitz equation [54], including the spin-dependent radiation reaction and the quantum recoil. We consider a depolarization scenario for the initially longitudinally spin-polarized (LSP) (with velocity, along the z axis) electron beam. The depolarization proceeds in different ways in semiclassical and quantum models, which after the interaction yields differences in the angle-resolved polarization distribution of the electron beam and provides the signatures of photon emission stochasticity in the spin radiative dynamics. In particular, in the SF model an electron continuously loses energy due to radiation (without stochastic effects and straggling in photon emissions, the photon energies are typically low), which gradually alters the electron trajectory and the spin longitudinal component due to the radiation reaction, while the spin component along the laser magnetic field oscillates in the symmetric laser field, as shown in Figs. 1(a i)–1(a iii). In contrast, in the MC model a finite number of photons are stochastically emitted with random energies and discretely alter the electron dynamics due to the quantum recoil, and the quantum spin state stochastically flips on the instantaneous spin quantization axis (SQA) [see Figs. 1(b i)–1(b iii)]. The signature characteristics of the stochasticity are identified by analyzing the features of the stochastic spin diffusion. In the second applied scenario, we use an initially unpolarized electron beam colliding head-on with an elliptically polarized laser pulse. Here the unpolarized electron beam splits along the propagation direction into...
two oppositely polarized parts, and the stochastic effect is observed in enhancing the separation.

II. SIMULATION METHODS

In this work we employ ultrashort laser fields with an invariant field parameter $d_0 \equiv E_0/\omega_0 m_0 c > 1$ [40,49], where E_0 and ω_0 are the laser field amplitude and frequency, respectively, and c and m_0 are the electron charge and mass, respectively. Relativistic units with $c = \hbar = 1$ are used throughout. The radiation reaction regime requires the invariant quantum parameter $\chi \equiv |e| \sqrt{\left(-F_{\mu\nu} F^{\mu\nu}\right)}/m^3 \gtrsim 1$ [40,49], with the field tensor $F_{\mu\nu}$ and the four-vector of the electron momentum p. In the electron-laser counterpropagating scheme, $\chi \approx 2 d_0 \gamma c \omega_0/\sqrt{m}$, with the electron Lorentz factor γ.

A. The MC method

In the MC method, we treat spin-resolved electron dynamics semiclassically and photon emissions quantum mechanically in the local constant field approximation [8,40,74,75], valid at $d_0 \gg 1$. At each simulation step, given the smallness of the emission angle on the order of $1/\gamma$ for an ultrarelativistic electron, the photon emission is assumed to be with the electron velocity and the photon emission is determined by the angle-integrated probabilities [41] for moderate-energy photons the inclusion of the angle for photon emission could affect the radiation beam [76], derived in the Baier-Katkov QED operator method [42]

$$\frac{d^2 W_{fi}}{da d\eta} = \frac{W_{fi}}{2} \left[F_0 + \xi F_1 + \xi^2 F_2 + \xi^3 F_3\right],$$

where

$$F_0 = -2(2 + u)^2 \left[\text{Int} K_{1/3}(u') - 2 K_{2/3}(u')\right] \left[1 + S_{1/3}\right],$$

$$F_1 = -2u^2 \text{Int} K_{1/3}(u')(S_{\hat{v}} \hat{v} \times \hat{a}) + (S_{\hat{v}} \hat{v} \times \hat{a})[S_{\hat{v}} \hat{v} \times \hat{a}]$$

$$+ 4u[(S_{\hat{v}} \hat{v} \times \hat{a}) + (S_{\hat{v}} \hat{v} \times \hat{a})] K_{1/3}(u') + 2u(2 + u) \hat{v}[S_{\hat{v}} \times S_{\hat{v}}] K_{2/3}(u');$$

$$F_2 = -(2u^2)[(S_{\hat{v}} \hat{v} \times \hat{a}) + (S_{\hat{v}} \hat{v} \times \hat{a})] + 2u(2 + u) \hat{v}[S_{\hat{v}} \times S_{\hat{v}}] K_{1/3}(u') - 4u[(S_{\hat{v}} \hat{v} \times \hat{a}) + (S_{\hat{v}} \hat{v} \times \hat{a})](1 + u) \times \text{Int} K_{1/3}(u') + 4u(2 + u)[(S_{\hat{v}} \hat{v} \times \hat{a}) + (S_{\hat{v}} \hat{v} \times \hat{a})] K_{2/3}(u');$$

$$F_3 = 4 \left[1 + u + \frac{u^2}{2}(S_{\hat{v}} \hat{v} \times \hat{a}) \right] - 2u^2 \frac{1}{2} (S_{\hat{v}} \hat{v} \times \hat{a}) K_{2/3}(u')$$

$$+ 2u(1 + u) [S_{\hat{v}} \hat{v} \times \hat{a}] - (S_{\hat{v}} \hat{v} \times \hat{a}) \text{Int} K_{1/3}(u') - 4u[(1 + u) = (S_{\hat{v}} \hat{v} \times \hat{a}) + S_{\hat{v}} \hat{v} \times \hat{a}] K_{1/3}(u');$$

$$W_R = a m c |\hat{v}|/(8\sqrt{3} \pi \xi_0 (k \cdot p) (1 + u^2)); u = \epsilon / (\epsilon_1 - \epsilon_2); \hat{u}' = 2u/3 \chi; \text{Int} K_{1/3}(u') \equiv \int_{-\infty}^{\infty} dz K_{1/3}(z); K_n \text{ is the nth-order modified Bessel function of the second kind; } \xi_0 \text{ is the fine-structure constant; } \chi_0 \text{ is the Compton wavelength; } \epsilon \text{ is the emitted photon energy; } \epsilon_1 \text{ is the electron energy before radiation; } n = k \cdot r \text{ is the laser phase; } p_1, \epsilon_1, \epsilon_2 \text{ and } r \text{ are four-vectors of the electron momentum before radiation, the laser wave vector, and the coordinate, respectively; } S_{\hat{v}} \text{ and } S_{\hat{v}} \text{ are the electron spin-polarization vector before and after radiation, respectively; } |S_{\hat{v}}| = 1; \text{ and } S_{\hat{v}} \equiv S_{\hat{v}} \cdot S_{\hat{v}}.$$ The photon polarization is represented by the Stokes parameters $\xi_1, \xi_2, \text{ and } \xi_3$, defined with respect to the axes $\hat{e}_1 = \hat{a} - \hat{v}(\hat{v} \cdot \hat{a})$ and $\hat{e}_2 = \hat{v} \times \hat{a}$ [77], with the photon emission direction \hat{a} along the electron velocity \hat{v} for the ultrarelativistic electron, $\hat{v} = v/|v|$, and the unit vector $\hat{a} = a/|a|$ along the electron acceleration \hat{a}.

As the radiation probability in Eq. (1) sums over the photon polarization and the electron final spin after radiation \hat{w}_{fi}, a photon is emitted, and the emitted photon energy ω_0 is determined by the condition $1/\gamma = \int_{\omega_0}^{\infty} \frac{d\omega}{d\omega} = N' \chi$ [78–80], where N and N' are two random numbers in $[0, 1]$. We choose two orthogonal pure states of the Stokes parameters $\xi_0 = \pm(-\xi_1, -\xi_2, \xi_3)/\xi_0$ with $\xi_0 = F_1/F_0$, $\xi_3 = F_3/F_0$, and $\xi_3^2 = F_3/F_0$, and $\xi_3^2 = F_3/F_0$, and $\xi_3^2 = F_3/F_0$, and the corresponding probabilities of the photon emission in these two states W_{fi}' can be obtained by Eq. (1). If $W_{fi}' = W_{fi} = N' \chi$ the ξ^2 photon state is chosen; otherwise the photon state is set to ξ_0, with a random number $N_0' \in [0, 1]$. For the photon observation, the Stokes parameters of each emitted photon should be rotated from the instantaneous frame to the observation frame (for more details see [41]).

After the photon emission the electron spin state is determined by the spin-resolved emission probabilities, integrating the photon polarization in Eq. (1) and instantaneously collapsing into one of its basis states defined with respect to the instantaneous SQA, which is chosen according to the particular observable of interest. To determine the polarization of the electron along the magnetic field in its rest frame, the SQA is chosen along the magnetic field $\hat{n}_1 = \hat{p} \times \hat{a}$ with the scaled electron velocity \hat{p} and the unit vector \hat{a} [54,57]. In the case when the electron beam is initially polarized with the initial spin vector $S_{\hat{v}}$, the observable of interest is the spin expectation value along the initial polarization and the SQA is chosen along that direction [41]. Between photon emissions, the spin precession is governed by the TBMT equation

$$\frac{dS}{dt} = e dS \times \left[\frac{g - 1}{\gamma_e + 1} \right] \beta \times E,$$

where \hat{E} and \hat{B} are the laser electric and magnetic fields, respectively, and the electron gyromagnetic factor $g(\chi) = 2 + 2\mu(\chi)$, with $\mu(\chi) = \frac{\chi}{\chi^2 + \chi + 1}$.

The electron dynamics in the external laser field between photon emissions is governed by the Lorentz equation

$$\frac{d\hat{r}}{dt} = \frac{\hat{r}}{\gamma_e} - \frac{e}{m_e c} \hat{E}.$$
\[\frac{dp}{dt} = -e(E + \beta \times B) \]. The photon emission induces the electron momentum change \(p_f \approx (1 - \omega_f^2 \beta_0^2) p_e + \text{recoil} \), where \(p_e \) is the electron momentum before and \(p_f \) after the interaction, respectively.

Note that we have carried out verification of the angular momentum conservation in the considered process. We show that the sum of the orbital and spin angular momenta of the initial electrons and absorbed laser photons equals the total angular (spin) momenta of final electrons and \(\gamma \) photons. Although in our simulation the laser field is an external classical field, we estimate the number of absorbed photons in each \(\gamma \)-photon emission process and confirm the angular momentum conservation by applying the method of Ref. [82].

B. The SF method

In our SF method, we revise the TBMT equation, including a term responsible for the radiation reaction. For the revision we generalize for arbitrary \(\chi \) the method of Refs. [48,70], where the radiation reaction for the spin evolution was calculated at \(\chi \ll 1 \). Nevertheless, the classical radiation-reaction force in Eq. (8) overestimates the total radiation power, because quantum corrections are absent from the photon emission and both effects coexist.

Consequently, there is no separate stochastic effect on the electron momentum or on the electron spin. Both effects originate from the photon emission and both effects coexist. As \(\chi \ll 1 \) the stochasticity effects are negligible [23], and the SF and MC models will give similar results.

III. RESULTS AND DISCUSSION

A. Case of an initially polarized electron beam

The angle- and energy-resolved distributions of the polarization and density of the electron beam are illustrated in Fig. 2, including and excluding radiative stochasticity, calculated by the MC and SF methods, respectively. Laser and electron-beam parameters are employed as follows. A realistic tightly focused Gaussian linearly polarized laser pulse [86] propagates along the \(+z \) direction (polar angle \(\theta_i = 0^\circ \)), with peak intensity \(I_0 \approx 3.45 \times 10^9 \) W/cm\(^2\) (\(a_0 = 50 \)), wavelength \(\lambda_0 = 1 \) \(\mu m \), pulse duration \(\tau = 10T_0 \) with period \(T_0 \), and focal radius \(w_0 = 5 \) \(\mu m \). The counterpropagating LSP electron beam has a cylindrical form, with average spin (polarization) components (\(\bar{\gamma}_x, \bar{\gamma}_y, \bar{\gamma}_z \)) = (0, 0, 1), polar angle \(\theta_e = 180^\circ \), azimuthal angle \(\phi_e = 0^\circ \), radius \(w_e = \lambda_0 \), length \(L_e = 5\lambda_0 \), electron number \(N_e = 5 \times 10^6 \) (density \(n_e \approx 3.18 \times 10^{17} \) cm\(^{-3} \) with a transversely Gaussian and longitudinally uniform distribution), initial kinetic energy \(\varepsilon_0 = 4 \) GeV (the maximum value of the quantum parameter during the interaction is \(\chi_{\text{max}} \approx 1.89 \)), angular divergence \(\Delta \theta = 0.3 \) mrad, energy spread \(\Delta \varepsilon/\varepsilon_0 = 0.06 \), and emittance \(\varepsilon_\varepsilon \approx 3 \times 10^{-4} \varepsilon_0 \). Such electron beams are achievable via laser wake-field acceleration [87,88] with further radiative polarization [54,58,59] or, alternatively, via directly wake-field acceleration of LSP electrons [64,65].

Radiative stochasticity induces very broad angular and energy distributions in the MC model in comparison with the SF case [cf. Figs. 2(a) and 2(b) with Figs. 2(e) and 2(f)]. The spreads are particularly large in the laser polarization direction. The spin and density distributions of the electrons are demonstrated more visibly for the MC model in Fig. 2(c), by summing over \(\theta_i \) in Figs. 2(a) and 2(b), respectively. The electron energies after the interaction are distributed in the
STOCHASTICITY IN RADIATIVE POLARIZATION OF …

PHYSICAL REVIEW RESEARCH 2, 033483 (2020)

gradually altered by continuous similar photon emissions. The average spin polarization Δ_{z} vs the deflection angle $\theta_{s} = \arctan(p_{s}/p_{x})$ and the electron energy ϵ_{e}, (b) and (f) Angle-resolved electron density $\log_{10}(dN_{e}/d\epsilon_{e})$ (mrad$^{-1}$ GeV$^{-1}$). (c) and (g) Plot of Δ_{z} [blue, calculated by summing over θ_{s} in (a) and (e), respectively] and $\log_{10}(dN_{e}/d\epsilon_{e})$ [red, calculated by summing over θ_{s} in (b) and (f), respectively] vs ϵ_{e}. (d) and (h) Degree of circular polarization of emitted photons $P_{CP}^{C} = \Delta_{z}$ [41,77] (blue) and energy density $\log_{10}(dN_{e}/d\epsilon_{e})$ (red) vs the photon energy ϵ_{e}. The left and right columns indicate the cases including and excluding radiative stochasticity, calculated by the MC and SF methods, respectively. The laser and electron-beam parameters are given in the text.

FIG. 2. (a) and (e) Longitudinal average spin (polarization) Δ_{z} vs deflection angle θ_{s} and energy ϵ_{e}. (b) and (f) Angle-resolved electron density $\log_{10}(dN_{e}/d\epsilon_{e})$ (mrad$^{-1}$ GeV$^{-1}$). (c) and (g) Plot of Δ_{z} [blue, calculated by summing over θ_{s} in (a) and (e), respectively] and $\log_{10}(dN_{e}/d\epsilon_{e})$ [red, calculated by summing over θ_{s} in (b) and (f), respectively] vs ϵ_{e}. (d) and (h) Degree of circular polarization of emitted photons $P_{CP}^{C} = \Delta_{z}$ [41,77] (blue) and energy density $\log_{10}(dN_{e}/d\epsilon_{e})$ (red) vs the photon energy ϵ_{e}. The left and right columns indicate the cases including and excluding radiative stochasticity, calculated by the MC and SF methods, respectively. The laser and electron-beam parameters are given in the text.

MC simulation in a rather large range from 0.2 to 4.2 GeV because, due to the straggling effects, some electrons do not radiate much. The average spin polarization Δ_{z} monotonically increases with the energy from approximately 34% up to 100%. This is because more photon emissions lead to more energy losses and more radiation reactions lead to more spin flips and further larger depolarization.

In contrast, in the SF model the final electron energies have a relatively small spread, from approximately 0.81 GeV to 1.15 GeV. The Δ_{z} behavior is qualitatively opposite to the MC model; it monotonically decreases with the energy increase, but the variation is not large, from approximately 80.7% to 76.4%, as shown in Fig. 2(g). We analyze the reason for the polarization behavior with the help of Fig. 3. First of all, let us note that the electrons in the beam experience similar instantaneous laser fields because the applied waist size of the beam is not small $w_{0} = 5w_{e}$ [see the fields experienced by three sample electrons in Fig. 3(b)]. Then the electron dynamics is gradually altered by continuous similar photon emissions. The relation of the polarization to the energy during the interaction is shown in Fig. 3(a). For the electron with a higher initial energy [see the sample electron e_{3} in Fig. 3(a)], the radiation is stronger due to the larger parameter $\chi_{\sim \alpha_{0}/\epsilon_{e}}$ and consequently the depolarization is larger, but its final energy is still higher because the radiative energy loss is smaller than the initial energy spread.

The average polarization of all electrons $\langle \Delta_{z} \rangle$ in the MC and SF models are comparable, $\Delta_{z}^{MC} \approx 78.64\%$ and $\Delta_{z}^{SF} \approx 77.92\%$, respectively, derived from data of Figs. 2(c) and 2(g). The relative deviation is $\delta_{\text{Spin}} = (\Delta_{z}^{MC} - \Delta_{z}^{SF})/(\Delta_{z}^{MC} + \Delta_{z}^{SF}) \approx 0.46\%$. The variation of Δ_{z} with respect to the parameter χ is shown in Fig. 3(c), which confirms that the SF method can provide the average depolarization (polarization) degree quite accurately, with a relative error of $\delta_{\text{Spin}} < 1\%$ at $\chi \leq 2$. With increasing χ, the stochasticity effects become larger and δ_{Spin} increases. However, at rather low $\chi \approx 0.047$, when the stochasticity is very weak, the average polarization can be deduced from the SF model, but the detailed energy-resolved polarization and density still show differences with respect to the stochastic MC model, as shown in Figs. 3(d) and 3(e). Thus, the increasing behavior of the electron polarization with the energy increase in the electron beam after the interaction [cf. Figs. 2(c) and 2(g)] is a distinct signature of the stochasticity in the radiative depolarization process.

Note that in experiments an appropriate polarimetry is required to measure the average polarization of electrons. The polarization of relativistic electrons can be detected via asymmetries in the momentum distribution of the scattered...
We have investigated also the role of stochasticity effects for emitted high-energy highly circularly polarized γ rays [see Figs. 2(d) and 2(h)]. While the circular polarization degree of γ photons varies with energy in a rather large range from approximately 0 to −1 in the MC model, the SF model shows a much smaller range from approximately 0 to −0.1. However, the average polarization degrees are similar and low, about −0.077 and −0.081 for the MC and SF models, respectively. This is because in the MC model the polarization is high for high-energy photons with very low numbers [see Figs. 2(d)–(h)]. The energy range of γ photons is high for high-energy photons with very low numbers [see Figs. 2(d)–(h)]. The energy range of γ photons is high for high-energy photons with very low numbers [see Figs. 2(d)–(h)].

We have investigated also the role of stochasticity effects for emitted high-energy highly circularly polarized γ rays [see Figs. 2(d) and 2(h)]. While the circular polarization degree of γ photons varies with energy in a rather large range from approximately 0 to −1 in the MC model, the SF model shows a much smaller range from approximately 0 to −0.1. However, the average polarization degrees are similar and low, about −0.077 and −0.081 for the MC and SF models, respectively. This is because in the MC model the polarization is high for high-energy photons with very low numbers [see Figs. 2(d)–(h)]. The energy range of γ photons is much larger in the MC model, similar to the electron energy distribution, electrons or emitted photons. Polariometry commonly employs the following physical principles: Mott scattering [89], Møller scattering [90], synchrotron radiation [91], and linear [92] and nonlinear Compton scattering [56]. The Mott and Møller polarimetries are inapplicable at high energies (\(\gamma \gg 100 \mu \text{A} \)) [94], respectively. The polarimetry based on synchrotron radiation demands a large-scale synchrotron facility. The linear Compton polarimetry is suitable at the considered high energies; however, it requires a large number of laser shots to reach a small statistical uncertainty of approximately 1% due to low electron-photon collision luminosity. With currently achievable ultraintense laser facilities, more promising is the nonlinear Compton scattering [56]. The Mott and Møller polarimetries are inapplicable at high energies (\(\gamma \gg 100 \mu \text{A} \)) [94], respectively. The polarimetry based on synchrotron radiation demands a large-scale synchrotron facility. The linear Compton polarimetry is suitable at the considered high energies; however, it requires a large number of laser shots to reach a small statistical uncertainty of approximately 1% due to low electron-photon collision luminosity. With currently achievable ultraintense laser facilities, more promising is the nonlinear Compton polarimetry, which can provide competitive resolution in a single-shot setup [56].

We have investigated also the role of stochasticity effects for emitted high-energy highly circularly polarized γ rays [see Figs. 2(d) and 2(h)]. While the circular polarization degree of γ photons varies with energy in a rather large range from approximately 0 to −1 in the MC model, the SF model shows a much smaller range from approximately 0 to −0.1. However, the average polarization degrees are similar and low, about −0.077 and −0.081 for the MC and SF models, respectively. This is because in the MC model the polarization is high for high-energy photons with very low numbers [see Figs. 2(d)–(h)]. The energy range of γ photons is much larger in the MC model, similar to the electron energy distribution,
FIG. 6. Plot of \bar{S}_y vs ϵ_e, simulated by the (a) MC and (b) SF methods, and plot of $\log_{10}(dN_e/d\epsilon_e)$ vs ϵ_e, simulated by the (c) MC and (d) SF methods. The green solid, red dashed, and blue dash-dotted curves indicate the cases of the invariant field parameter $a_0 = 40$, 50, and 60, respectively. Other laser and electron-beam parameters are the same as those in Fig. 2.

FIG. 8. Plot of \bar{S}_{half}^y vs ϵ_e, simulated by the (a) MC and (b) SF methods. The green solid, red dashed, and blue dash-dotted curves indicate the cases of $\epsilon_0 = 2$, 4, and 10 GeV, respectively. Other laser and electron-beam parameters are the same as those in Fig. 4.

C. Impact of the laser and electron-beam parameters on the considered signatures

For experimental feasibility, we investigate the impact of the laser and electron-beam parameters, e.g., variations of the initial kinetic energy of the electron beam ϵ_0, the invariant...
The variation of the energy spread of the electron beam does not change the considered qualitative signatures either. The green solid, red dashed, and blue dash-dotted curves indicate the cases of \(\tau = 8T_0 \), \(\tau = 10T_0 \), and \(\tau = 12T_0 \), respectively. Other laser and electron-beam parameters are the same as those in Fig. 4.

field parameter \(a_0 \), and the laser pulse duration \(\tau \), on the considered signatures of radiative stochasticity. Corresponding to Fig. 2, as \(\epsilon_0 \) increases from 2 GeV to 10 GeV, \(a_0 \) from 40 to 60, and \(\tau \) from 8\(T_0 \) to 12\(T_0 \), the considered signatures of radiative stochasticity remain uniform, as shown in Figs. 5–7. In addition, with the variations of \(\epsilon_0 \), \(a_0 \), and \(\tau \), the considered signatures of radiative stochasticity corresponding to Fig. 4 remain qualitatively the same, as shown in Fig. 4. For instance, with increases of \(\epsilon_0 \) and \(a_0 \), the stochasticity effects are enhanced since \(\chi \propto a_0\epsilon_0 \) increases in the MC model and consequently the peak of \(S_y^{\text{half}} \) goes up [see Figs. 8(a) and 9(a)]. However, in the SF model, as \(\epsilon_0 \) (or \(a_0 \)) increases, the splitting angle \(\theta \sim \Delta \theta / \epsilon_0 \) decreases (increases); thus \(S_y^{\text{half}} \) goes down (up) at small \(\epsilon \), and this effect is weakened and even eliminated at large \(\epsilon \) due to the laser field rotation [see Figs. 8(b) and 9(b)]. As \(\tau \) increases, \(S_y^{\text{half}} \) increases at small \(\epsilon \) due to more photon emissions \(\sim \tau \), as demonstrated in Fig. 10. The variation of the energy spread of the electron beam does not change the considered qualitative signatures either.

To summarize, we developed a semiclassical stochasticity-free method of radiative polarization applicable in the quantum regime for arbitrary \(\chi \). Then we revealed qualitative signatures of the stochastic effects on electron spin, which are much different from those well studied for electron momenta, are feasible with the currently available laser facilities, and provide a measurable objective for future strong laser experiments.

IV. CONCLUSION

Photon emission by an electron in the quantum regime is a discrete stochastic process, which leaves its signatures in the momentum as well as in the spin dynamics of the electron. We have shown that the stochastic photon emission will induce qualitative changes in the angle- and energy-resolved average spin distributions with respect to the stochasticity-free case. We have analyzed the impact of stochastic photon emission in a strong laser field on the initially LSP electron radiative depolarization as well as on the emitted \(\gamma \)-ray polarization. To display the stochasticity on the electron spin, we have developed a semiclassical SF method of radiative polarization applicable in the quantum regime for arbitrary \(\chi \). The qualitative signatures of the stochasticity have been demonstrated in the energy-resolved electron polarization after the interaction and in the energy-resolved polarization of the emitted \(\gamma \) photons. In the case of an initially unpolarized electron beam, the stochasticity effect was demonstrated in the dependence of the electron polarization on the laser ellipticity. These qualitative signatures are observable with the currently available laser facilities and are robust with respect to the laser and electron-beam parameters. They extend our understanding of the stochastic effects at photon emissions, which have previously been known only as yielding a broadening of the energy spread of an electron beam.

ACKNOWLEDGMENTS

R.-T.G., Y.W., and J.-X.L. thank Prof. C. Keitel for hospitality. This work was supported by the National Natural Science Foundation of China (Grants No. 11874295, No. 11875219, and No. 11905169) and the National Key R&D Program of China (Grant No. 2018YFA0404801). Y.-Y.C. was supported by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and Shanghai Rising-Star Program.

