Superfluid flow in disordered superconductors with Dynes pair-breaking scattering: Depairing current, kinetic inductance, and superheating field

Takayuki Kubo*
High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan and The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan

(Received 6 April 2020; revised 11 May 2020; accepted 15 July 2020; published 5 August 2020)

We investigate the effects of Dynes pair-breaking scattering rate Γ on the superfluid flow in a narrow thin-film superconductor and a semi-infinite superconductor by self-consistently solving the coupled Maxwell and Usadel equations for the BCS theory in the diffusive limit for all temperature T, all Γ, and all superfluid momentums. We obtain the depairing current density $j_d(\Gamma, T)$ and the current-dependent nonlinear kinetic inductance $L_k(j_d, \Gamma, T)$ in a narrow thin film and the superheating field $H_{sh}(\Gamma, T)$ and the current distribution in a semi-infinite superconductor, taking the nonlinear Meissner effect into account. The analytical expressions for $j_d(\Gamma, T)_{T=0}$, $L_k(j_d, \Gamma, T)_{T=0}$, and $H_{sh}(\Gamma, T)_{T=0}$ are also derived. The theory suggests j_d and H_{sh} can be ameliorated by reducing Γ, and L_k can be tuned by a combination of the bias current and Γ. Tunneling spectroscopy can test the theory and also give insight into how to engineer Γ via materials processing. Implications of the theory would be useful to improve performances of various superconducting quantum devices.

DOI: 10.1103/PhysRevResearch.2.033203

I. INTRODUCTION

The physics of the superfluid flow in s-wave superconductors is closely tied with the operating principles and performances of various superconducting quantum devices such as superconducting nanowire single-photon detectors (SNSPDs) [1,2], resonators for microwave kinetic inductance detectors (MKIDs) [3,4] and quantum computers [5–7], and superconducting radio-frequency (SRF) resonant cavities for particle accelerators [8–11]. The supercurrent density j_s is proportional to the superfluid momentum hq and the superfluid density n_s. When $|q|$ is such a small value that n_s is not significantly suppressed, j_s linearly increases with $|q|$. However, as $|q|$ increases, the reduction of n_s becomes significant and j_s ceases to increase [12–14]. The maximum value of j_s is called the depairing current density j_d and determines the stability limit of the superfluid flow, above which finite electrical resistance necessarily appears. In SNSPDs, a superconducting nanowire is biased with a dc current close to j_d. An incident photon absorbed by the strip heats electrons and reduces the critical current below the bias current, resulting in measurable finite electrical resistance. The reset time after a detection event is often limited by the kinetic inductance [15]. In MKIDs, the kinetic inductance plays an essential role in its operating mechanism. Incoming photons with a frequency higher than the superconducting gap break Cooper pairs and lead to an increase of the kinetic inductivity $L_k \propto 1/n_s$. A resultant shift of resonant frequency $\delta f \propto -\delta L_k$ can be detected. Besides, the bias current also reduces n_s and increases L_k and can be utilized to tune a resonator frequency [16] and to observe the nonlinear Meissner effect [17]. In SRF resonant cavities, charged particles are accelerated by the electric component of the microwave, which is proportional to the rf magnetic field at the surface. Vortex-free cavities [18–21] exhibit a huge quality factor $Q \sim 10^{10}–10^{12}$ at $T < 2$ K [22–24] even under strong rf magnetic field [25–28] such that the nonlinear Meissner effect manifests itself. Here the achievable rf field is limited by the induced screening current at the surface, which cannot exceed j_d. The surface magnetic field that induces j_d is coincident with the superheating field H_{sh}, which is the stability limit of the Meissner state. H_{sh} is thought to define the upper limit of the accelerating field [9–11] and is one of the main interests in fundamental SRF studies [29,30].

Microscopic calculations of physical quantities relevant to these devices would provide us with a deeper understanding of experimental results and clues to improving device performance. Those for disordered materials are especially important because these devices are often made from high-resistance films or impurity-doped bulk materials [31–35]. Some 60 years ago, Maki calculated j_d at the temperature $T \to 0$ [13,14]. Kupriyanov and Lukichev obtained j_d for an arbitrary T [36]. By using Maki’s results, L_k for the current-carrying state was calculated afterward [37]. Then those for all T and j_s up to j_d were investigated [38]. Calculations of H_{sh} also have a long history, starting from those for a clean-limit superconductor [39,40]. Effects of homogeneous [41] and inhomogeneous [42] impurities on H_{sh} were recently

* kubotaka@post.kek.jp

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
investigated. However, theories including realistic materials features which can limit device performances have been studied to a lesser extent. Such theories would be useful to pin down causes of performance limitations, e.g., critical current below the ideal j_d in nanowires and quenches below the ideal H_{th} in SRF cavities, etc.

One of the common features among various superconducting materials is the broadening of the density of states (DOS), which has been observed in a numerous number of tunneling experiments [43] (see, e.g., Refs. [32, 44, 45] for SRF materials). Such a broadened DOS has been described by the Dynes formula [46, 47], which is given by $N(\epsilon)/N_0 = \text{Re}[(\epsilon + i\Gamma)/(\epsilon + i\Gamma)^2 - \Delta^2]$ (see Fig. 1). Here Δ is the pair potential, N_0 is the normal-state DOS at the Fermi energy, and Γ is the Dynes pair-breaking scattering rate. The Γ parameter results in a finite density of subgap states in the vicinity of the Fermi level Γ/Δ and a constant quasiparticle lifetime \hbar/Γ. A microscopic derivation of the Dynes formula has been investigated [48–51]. In addition, irrespective of microscopic models of Dynes formula, we can formulate the quasiclassical theory of the BCS model which incorporates Γ [52–56]. Interestingly, it has been shown that the pair-breaking Γ parameter and other pair breakers (e.g., current [57–59], magnetic impurities [60, 61] and proximity-coupled normal layer [62, 63]) can reduce the rf dissipation in the weak- and the strong-rf regimes via a modification of the quasiparticle spectrum [52–54, 64].

In this paper, we focus on effects of Γ on the superfluid flow in disordered superconductors. We consider the geometries shown in Fig. 2: a thin and narrow superconducting film (relevant to, e.g., SNSPD, MKID) and a semi-infinite superconductor (relevant to, e.g., SRF cavities made from bulk materials or thick film). We evaluate the depairing current density $j_d(\Gamma, T)$, the current-dependent nonlinear kinetic inductance $L_k(j, \Gamma, T)$, and the superheating field $H_{sh}(\Gamma, T)$ for all T, all Γ, and all currents. The results of this paper could provide one with clues to finding out causes of performance limitations and those used to improve performances of superconducting quantum devices.

The paper is organized as follows. In Sec. II, we briefly review the Eilenberger-Usadel formalism [65–68] of the BCS theory and express physical quantities with the Matsubara Green’s functions. In Sec. III, we solve the Usadel equation for all T, all Γ, and all q. Some useful formulas of Δ, n_σ, penetration depth λ, and j_d at $T = 0$ and ΔT are also obtained. In Sec. IV, we consider a thin and narrow superconducting film [Fig. 2(a)]. We evaluate the depairing current density $j_d(\Gamma, T)$ and the current-dependent nonlinear kinetic inductance $L_k(j, \Gamma, T)$. In addition to numerical results, we present the analytical formulas for $j_d(\Gamma, T)$ and $L_k(j, \Gamma, T)$ at $T = 0$ and ΔT. In Sec. V, we consider a semi-infinite superconductor [Fig. 2(b)]. We calculate the current distribution taking the nonlinear Meissner effect into account and evaluate the superheating field $H_{sh}(\Gamma, T)$. Analytical formulas for $T \to 0$ and $T \simeq T_c$ are also derived. In Sec. VI, we discuss the implications of our results.

II. THEORY

We apply the well-established Eilenberger-Usadel formalism [65–68] of the BCS theory in the diffusive limit to the geometries shown in Fig. 2. The normal and anomalous quasiclassical Matsubara Green’s functions $G_{n\sigma} = \cos \theta$ and $F_{n\sigma} = \sin \theta$ obey the Usadel equation:

$$\frac{\hbar D}{2} \theta'' = s \sin \theta \cos \theta + (\hbar v_n + \Gamma) \sin \theta - \Delta \cos \theta.$$ (1)

Here D is the electron diffusivity, the prime denotes differentiation with respect to x, $s = (q/\ell_D)^2 \Delta_0$ is the superfluid flow parameter, $\Delta_0 = \Delta(s, \Gamma, T)|_{\nu = 0}$ is the BCS pair potential at $T = 0$, $\hbar \theta$ is the superfluid momentum, v_n is the superfluid velocity, m is the electron mass, $\ell_D = \sqrt{2\hbar D/\hbar \theta}$ is the inverse of the coherence length, and $\hbar v_n = 2\pi k_B T (n + 1/2)$ is the Matsubara frequency. The Γ parameter introduced on the right-hand side of Eq. (1) implies that we have incorporated phenomenological pair breakers consistent with observed spectra (see, e.g., Refs. [52–56]). Note one can confirm that the Green’s functions obtained from Eq. (1) reproduce the Dynes quasiparticle spectrum.

The current distributes uniformly in Fig. 2(a) and varies slowly over the coherence length in Fig. 2(b). In either case,
the θ^o term is negligible and Eq. (1) reduces to

$$\left(\Delta - \frac{s}{\sqrt{1 + \cot^2 \theta}} \right) \cot \theta = \hbar \omega_n + \Gamma. \tag{2}$$

Note that in Fig. 2(b), θ and Δ depend on x via $s = s(x)$. The pair potential $\Delta(s, \Gamma, T)$ satisfies the self-consistency equation

$$\ln \frac{T_0}{T} = 2\pi k_B T \sum_{\omega_n > 0} \left(\frac{1}{\hbar \omega_n} - \frac{\sin \theta}{\Delta} \right), \tag{3}$$

where $k_B T_0 = \Delta_0 \exp(\gamma_B)/\pi \simeq \Delta_0/1.76$ is the BCS critical temperature and $\gamma_B = 0.577$ is the Euler constant.

Physical quantities can be calculated using the Green’s functions as follows. The thermodynamic critical field H_c is given by \[51,54\]

$$H_c(\Gamma, T) = \sqrt{\frac{2}{\mu_0} \Omega(0, \Gamma, T)}, \tag{4}$$

$$\Omega(0, \Gamma, T) = -2\pi TN_0 \Delta \times \sum_{\omega_n > 0} \left[\frac{2(\hbar \omega_n + \Gamma)}{\Delta} \cos \theta - 1 + \sin \theta \right], \tag{5}$$

where θ and Δ in Eq. (5) are evaluated for $s = 0$. Note that H_c is not the central theme of this paper but often appears as a normalization constant for j_s, H, and $H_{0\parallel}$ in the following sections. The superfluid density n_s, penetration depth λ, and supercurrent density j_s are given by

$$\frac{n_s(s, \Gamma, T)}{n_{0\parallel}} = \frac{\lambda^2}{\lambda^2(s, \Gamma, T)} \frac{4k_B T}{\Delta_0} \sum_{\omega_n > 0} \sin^2 \theta, \tag{6}$$

$$\frac{j_s(s, \Gamma, T)}{j_{0\parallel}} = \sqrt{\frac{\pi s n_s(s, \Gamma, T)}{\Delta_0 n_{0\parallel}}}. \tag{7}$$

Here $n_{0\parallel} = n_s(0, 0, 0) = 2\pi m N_0 D_{\Delta_0}/\hbar$ is the BCS superfluid density at $T = 0$, $\lambda_{0\parallel} = \lambda(0, 0, 0) = \sqrt{\hbar / \mu_0 \Delta_0 \sigma_0}$ is the BCS penetration depth at $T = 0$, $j_{0\parallel} = H_{0\parallel}/\lambda_{0\parallel} = \sqrt{\hbar / e N_0 D_{\Delta_0} q_0}$, and $H_{0\parallel} = H_s(0, 0) = \sqrt{N_0/\mu_0 \Delta_0}$ is the BCS thermodynamic critical field at $T = 0$.

In the geometry shown in Fig. 2(b), n_s, λ, and j_s depend on x through $s(x) = \{q(x)/\eta k\}^2 \Delta_0$. Here $j_s(x), H_s(x)$, and $q(x)$ obey the Maxwell equation, $j_s = -\partial \mathcal{H} / \partial \mathcal{A}_s$, and $\mathcal{H}(x) = (\hbar / 2 e) \partial q / \partial x$, namely,

$$\frac{\partial^2 q}{\partial \tau^2} = \frac{q}{\lambda^2(s, \Gamma, T)}, \tag{8}$$

$$\frac{\mathcal{H}}{H_{0\parallel}} = \sqrt{\pi} \frac{\partial (q / \partial \tau)}{\partial (x / \lambda_0)}. \tag{9}$$

By using the magnetic field at the surface $H_{0\parallel}$, the boundary conditions can be written as

$$H(0) = H_{0\parallel}, \quad \lim_{x \to \infty} q(x) \to 0. \tag{10}$$

Self-consistent calculations of Eqs. (2), (3), and (6)–(10) yield the distributions of $\theta(x), \Delta(x), \lambda(x), j_s(x), q(x)$, and $H(x)$ for a given set of $H_{0\parallel}$ and T.

In the Ginzburg-Landau (GL) regime, $T \simeq T_c$, we can expand the Matsubara Green’s functions in powers of $\delta = \Delta / 2\pi k_B T \ll 1 \[54\]$

$$\sin \theta = a \delta - \frac{1}{2}
\left(a^3 - \frac{s}{2\pi k_B T} \delta^2 \right), \tag{11}$$

$$\cos \theta = 1 - \frac{a^2}{2} \delta^2 - \frac{1}{8} \left(\frac{s}{\pi k_B T} \delta^4 \right). \tag{12}$$

Here $a = (n + 1/2 + s / 2\pi k_B T + \Gamma / 2\pi k_B T)^{-1}$. Substituting Eqs. (11) and (12) into Eq. (3), we obtain the GL equation \[54\]

$$1 - \frac{T}{T_c} = \frac{\pi s}{4\pi k_B T_c} + \frac{7\xi(3)}{8\pi^2 k_B T_c} \Delta^2, \tag{13}$$

for $\Delta, s, \Gamma \ll 2\pi k_B T$, and $T \simeq T_c$. Note that here T_c depends on Γ.

In the following, we use Δ_0 as a unit of energy and use dimensionless quantities $\tilde{s} = s / \hbar \omega_n + \Gamma / \Delta_0, \tilde{\lambda} = \lambda / \Delta_0, \tilde{T} = k_B T / \Delta_0$, etc. For brevity, we omit all the tildes.

III. SOLUTIONS

A. Zero-current state ($s = 0$)

First, consider the zero-current state ($s = 0$) at the low-temperature limit ($T = 0$). The pair potential Δ can be calculated from Eqs. (2) and (3). The solution of Eq. (2) is given by $\cot \theta = (\hbar \omega_n + \Gamma / \Delta_0)$. Substituting θ into Eq. (3), we find (see Appendix A)

$$\Delta(0, \Gamma, 0) = \exp \left[-\sin^{-1} \frac{\Gamma / \Delta(0, \Gamma, 0)}{\Delta(0, \Gamma, 0)} \right], \tag{14}$$

which reduces to $\Delta \simeq 1 - \Gamma / \Delta_0$ for $\Gamma \ll 1$. The equation for T_c is obtained by solving Eqs. (2) and (3) for θ and $\Delta \simeq 1$ and $T \simeq T_c$. Then, we have \[52,54\]

$$\ln \frac{T_c}{T_0} = \psi \left(\frac{1}{2} \right) - \psi \left(\frac{1}{2} + \frac{\Delta / \Delta_0}{2\pi k_B T_c} \right), \tag{15}$$

which reduces to $T_c \simeq T_0 - \pi \Gamma / 4$ for $\Gamma \ll 1$. Note that here Eq. (15) has the same form as the well-known equation for the critical temperature of a superconductor with pair-breaking perturbations \[12,69,70\]. The thermodynamic critical field H_c can be calculated from Eqs. (4) and (5). At $T = 0$, we find (see Appendix A)

$$\frac{H_c(\Gamma, 0)}{H_{0\parallel}} = \Delta \sqrt{1 + \frac{2\Gamma^2}{\Delta^2} - \frac{1}{\Delta}} \sqrt{1 + \frac{\Gamma^2}{\Delta^2}}, \tag{16}$$

which reduces to $H_c / H_{0\parallel} \simeq 1 - 2\Gamma$ for $\Gamma \ll 1$. The superfluid density n_s and the penetration depth λ can be calculated from Eq. (6). At $T = 0$, we have \[52,54\]

$$\frac{n_s(0, \Gamma, 0)}{n_{0\parallel}} = \frac{\lambda^2}{\lambda^2(0, \Gamma, 0)} \left[\frac{\Delta(0, \Gamma, 0)}{\Delta(0, \Gamma, 0)} \right] \left[1 - 2^{-1} \tan^{-1} \frac{\Gamma / \Delta(0, \Gamma, 0)}{\Delta(0, \Gamma, 0)} \right], \tag{17}$$

which reduces to $n_s / n_{0\parallel} \simeq 1 - (1 + 2 / \pi) \Gamma$ for $\Gamma \ll 1$. Shown in Fig. 3 are $\Delta(0, \Gamma, T)|_{T=0}, T_c(\Gamma), H_c(\Gamma, T)|_{T=0}$.
and \(n_s(0, \Gamma, T)\) as functions of \(\Gamma\), which monotonically decrease as \(\Gamma\) increases and vanish at \(\Gamma = 1/2\).

For \(T \approx T_c\), the GL regime, we can calculate \(\Delta, H_s, n_s, \) and \(\lambda\) as functions of \(T\) and \(\Gamma\). Then, we numerically solve Eqs. (21)–(23), the general formulas calculated for different 033203-4

For \(0 < T < T_c\), we numerically solve Eqs. (2)–(6). Shown in Fig. 4 are \(\Delta(0, \Gamma, T), H_s(\Gamma, T), n_s(0, \Gamma, T), \) and \(\lambda(0, \Gamma, T)\) as functions of \(T\). Then, \(\Delta, H_s, \) and \(n_s \propto \lambda^{-2}\) are monotonically decreasing functions of \(T\) and \(\Gamma\) [51,52,54].

B. Current-carrying state \((s > 0)\)

Now consider the current-carrying state \((s > 0)\). In addition to the Dynes pair-breaking scattering rate \(\Gamma\), the superfluid momentum \(\hbar q\) gives rise to pair-breaking effects, suppressing \(\Delta\) and \(n_s\) and resulting in nonlinearity of \(j_s\) with \(q\).

For \(T = 0\), the self-consistency equation results in (see Appendix B)

\[
\Delta(s, \Gamma, 0) = \exp \left[-\sinh^{-1} u_0 - \frac{s}{2\Delta(s, \Gamma, 0)} \left(\frac{\pi}{2} - \tan^{-1} u_0 - \frac{u_0}{1+u_0^2} \right) \right],
\]

(21)

where \(u_0(s, \Gamma)\) is defined by \([\Delta(s, \Gamma, 0) - s/\sqrt{1+u_0^2}]u_0 = \Gamma\). The superfluid density \(n_s(s, \Gamma, 0)\) can be calculated from Eq. (6). Hence (see Appendix B)

\[
\frac{n_s(s, \Gamma, 0)}{n_0} = \frac{\lambda_0^2}{\lambda^2(s, \Gamma, 0)} \Delta(s, \Gamma, 0) \left[1 - \frac{2}{\pi} \tan^{-1} u_0 - \frac{4s}{3\pi} \right] \left(1 - \frac{u_0(3+2u_0^2)}{2(1+u_0^2)^2} \right).
\]

(22)

Note that Eqs. (21) and (22) reproduce Eqs. (14) and (17) at the zero-current limit \((s \to 0)\). The supercurrent density \(j_s\) is calculated from Eq. (7):

\[
j_s(s, \Gamma, 0) = \frac{\sqrt{\pi s} n_s(s, \Gamma, 0) H_{0,\Gamma}}{n_0 \lambda_0}.
\]

(23)
Equations (24)–(26) are valid under an arbitrary current density as long as \(\Gamma \) satisfies \(\Gamma/(\Delta - s) \ll 1 \). Equations (27)–(29) are useful when we consider the small-current regime.

Shown in Fig. 5 are \(\Delta, n_s, j_s \) at \(T = 0 \) as functions of the superfluid momentum \(|q/q_d| = \sqrt{s} \) calculated from the exact formulas given by Eqs. (21)–(23). While \(\Delta \) and \(n_s \) are monotonically decreasing functions, \(j_s \) exhibits nonmonotonic behaviors. At smaller \(|q| \) regions, \(j_s \) is proportional to \(|q| \). As \(|q| \) increases, \(j_s \) becomes dominated by a rapid reduction of \(n_s \) and ceases to increase. At a threshold value \(q_d \) or \(s_d = (q_d/q_t)^2 \), \(j_s \) reaches the maximum value (colored blob), which is the depairing current density \(j_d \).

For \(T \approx T_c \), the GL regime, \(\Delta \) in the current-carrying state is calculated from Eq. (13). Then we obtain [54]

\[
\Delta(s, \Gamma, T) = \sqrt{\frac{8\pi^2 T^2}{\pi \zeta(3)}} \left(1 - \frac{T}{T_c} \right) \left(1 - \frac{s}{s_m} \right),
\]

\[
n_s(s, \Gamma, T) = \frac{\Delta^2(s, \Gamma, T)}{2T_c},
\]

\[
j_s(s, \Gamma, T) = \sqrt{\frac{\pi}{2(T_c - T)}} \sqrt{1 - \frac{s}{s_m}} \frac{H_c(\Gamma, T)}{\lambda(0, \Gamma, T)}
\]

for \(T \approx T_c(\Gamma) \). Here \(s_m(\Gamma, T) = (4T_c/\pi)(1 - T/T_c) \).

For \(0 < T < T_c \), we need to numerically solve Eqs. (2)–(7) for a finite \(s \). Shown in Figs. 6(a) and 6(b) are \(\Delta(s, \Gamma, T) \), \(n_s(s, \Gamma, T) \), and \(j_s(s, \Gamma, T) \) as functions of \(|q/q_t| = \sqrt{s} \) at \(T/T_c = 0.5 \) for different \(\Gamma \). The similar calculations for other \(T \) are straightforward (see also Ref. [54]). The \(q \) dependencies of \(\Delta \), \(n_s \), and \(j_s \) resemble those for \(T = 0 \) (see Fig. 5). As \(T \) increases, all these values monotonically decrease, and the depairing current densities (colored blobs) also shift to lower values.

IV. THIN AND NARROW FILM

In this section, we consider the geometry shown in Fig. 2(a): a narrow thin film. We calculate the depairing current density and the kinetic inductance using the results obtained in Sec. III.

A. Depairing current density

For \(T = 0 \), the depairing current density \(j_d \) is already obtained for some \(\Gamma \) values (colored blobs in Fig. 5). That for an arbitrary \(\Gamma \) can also be calculated from the formulas, Eqs. (21)–(23), by finding the maximum values of \(j_s \). Shown as the solid curves in Fig. 7 are \(j_d \) and \(s_d = (q_d/q_t)^2 \) as functions of \(\Gamma \). An increase of \(\Gamma \) leads to decreases of \(n_s \) and \(j_s \), resulting in a monotonic decrease of \(j_d \).

For \(\Gamma \ll 1 \), we can derive an analytical formula for \(j_d \). Using Eqs. (24)–(26) and the condition \(\delta j_s = 0 \), we find (see Appendix C)

\[
j_d(\Gamma, 0) = \sqrt{\pi s_d} \left[\Delta_d - \frac{4\pi s_d}{3\pi} - \frac{2\Gamma}{\pi^2} \frac{H_c(0)}{T_c} \right],
\]

\[
\Delta_d = \Delta_d(0) \exp \left[-\frac{\pi \alpha}{4} \frac{\Gamma}{\Delta_d(0)} \right],
\]

\[
s_d = (s_d(0) - \alpha \Gamma) \exp \left[-\frac{\pi \alpha}{4} \frac{\Gamma}{\Delta_d(0)} \right],
\]

\[
\zeta_d = \frac{2}{\pi} + \frac{3\pi}{8} - \frac{\left(\frac{2}{\pi} + \frac{3\pi}{8} \right)^2}{2} = 0.300,
\]

\[
\Delta_d = e^{-\frac{\pi}{8} \zeta_d} = 0.790,
\]

\[
s_d = \Delta_d \zeta_d = 0.237,
\]

\[
\alpha = \frac{1 + \pi/2 - 2(1 + 8/\pi) \zeta_d}{2 + 3\pi^2/8 - \pi \zeta_d} = 0.365.
\]
The kinetic inductance of a narrow thin film is given by \(L_{\text{film}} = (\ell/Wd) L_k \) for the length \(\ell \), width \(W \), and thickness \(d \). The kinetic inductivity \(L_k \) is defined by \(L_k = -A \) \[38,74\], the dot denotes differentiation with respect to the time \(t \), and \(A = \hbar q/2|e| \) is the vector potential. Hence,

\[
L_k(s, \Gamma, T) = \frac{\hbar(q/2|e|)}{\mu_0 \lambda^2_0} = \frac{\dot{q}}{q_{\text{sd}}^0} + \frac{q_{\text{sd}}^0}{\mu_0 \lambda^2_0}.
\]

Here \(\hbar q/2\sqrt{|e|} \dot{j}_d = \mu_0 \lambda^2_{0} \) is used. In the following, we investigate \(L_k \) for the zero-current limit and the current-carrying state in the fast- and slow-measurement regimes \[38,74\] for all \(T \), all \(\Gamma \), and all \(j_d \) up to \(j_d(\Gamma) \).

I. Zero-current limit \((s \to 0)\)

We start from the zero-current limit. Taking \(q \to 0 \), Eq. (43) reduces to \(L_k(0, \Gamma, T) = \mu_0 \lambda^2_0 n_s(0, \Gamma, T) = \mu_0 \lambda^2_0 n_s(0, \Gamma, T) \) using the analytical expression for \(n_s(0, \Gamma, T) \) \[52,54\]. We find the general formula for the zero-current kinetic inductance,

\[
L_k(0, \Gamma, T) = \frac{\mu_0 \lambda^2_0}{\lambda(0, \Gamma, T)}\frac{1}{\tanh\left(\frac{\Delta(0, \Gamma, T)}{2T}\right)}.
\]

For \(T = 0 \) and \(\Gamma \geq 0 \), Eq. (44) reduces to

\[
L_k(0, 0, T) = \frac{\mu_0 \lambda^2_0}{\lambda(0, 0, T)}\frac{1}{\tanh\left(\frac{\Delta(0, 0, T)}{2T}\right)}.
\]

where \(\Delta(0, 0, 0) \) can be calculated from Eq. (3) (see also Fig. 4). For the ideal BCS superconductor \((\Gamma = 0)\), Eq. (44) reproduces the well-known result \[37,38,75\].

\[
L_k(0, 0, T) = \frac{\mu_0 \lambda^2_0}{\lambda(0, 0, T)}\frac{1}{\tanh\left(\frac{\Delta(0, 0, T)}{2T}\right)}.
\]

In the GL regime, we can use Eq. (20).

\[
L_k(0, 0, T) = \frac{7\xi(3)}{4\pi^2 T_c} \frac{\mu_0 \lambda^2_0}{\lambda(0, 0, T)}\frac{1}{\tanh\left(\frac{\Delta(0, 0, T)}{2T}\right)}.
\]

For \(T \simeq T_c \).

Shown in Fig. 9(a) are \(L_k \) in the zero-current state as functions of \(T \) for different \(\Gamma \) calculated from Eq. (44). As \(T \) or \(\Gamma \) increase, the superfluid density \(n_s \) decreases and \(L_k \) increases and diverges at \(T = T_c \) or \(\Gamma = 1/2 \). Shown in Fig. 9(b) are \(L_k(0, \Gamma, T) \) normalized with \(L_k(0, 0, T) \) as functions of \(T/T_c(\Gamma) \). The blue curve, which represents the ideal BCS superconductor with \(\Gamma = 0 \), obeys Eq. (45). The red curve \((\Gamma = 0.4)\) represents a superconductor with large densities of subgap states (see also Fig. 1), which grows up with \(T/T_c \) faster than the ideal one.

2. Current carrying state \((s > 0)\): Fast measurement

Now consider a current-carrying superconductor in the fast measurement regime \[38,74\], in which the time-dependent current changes rapidly about its time average on a timescale.
much shorter than the relaxation time of \(n_s \). We assume \(n_s \) cannot follow the time dependence of the current and take \(n_s \rightarrow 0 \). Then, Eq. (43) reduces to

\[
L_k(s, \Gamma, T) = \mu_0 \lambda_0^2 \frac{n_{s0}}{\langle s \rangle} = \mu_0 \lambda_0^2 \langle s \rangle \langle \Gamma, T \rangle,
\]

(49)

where \(\langle s \rangle \) is the time average of \(s(t) \). Experiments in this regime is found in, e.g., Ref. [75].

We consider a superconductor under a dc biased rf current: \(q(t) = q_{bias} + q_{rf}(t) \), \(s(t) = q(t)/q_{bias} + s_{bias}(t) \), and \(j_t = j_t(s_{bias} + s_{df}(t)) = j_{bias} + j_{df} \). In this case, we have \(\langle s \rangle = s_{bias} = \langle q_{bias}/q_{ rf} \rangle \) and \(j_{bias} = j_t(s_{bias}) \). Note that, when \(s_{bias} = 0 \), Eq. (49) reduces to the zero-current kinetic inductance, Eq. (44).

For \(T = 0 \), we can use Eqs. (21)–(23) to evaluate Eq. (49). Shown in Fig. 10(a) are \(L_k(\langle j_{bias}, \Gamma, T \rangle_{T=0}) \) as functions of the dc bias current \(j_{bias} \) for different \(\Gamma \). As \(j_{bias} \) increases, \(L_k \) monotonically increases and reaches the maximum at the depairing current density \(j_d \) (colored blob). Shown in Fig. 10(b) are \(L_k(\langle j_{bias}, \Gamma, 0 \rangle) \) as functions of the normalized current \(j_{bias}/j_d \). The effects of \(\Gamma \) are significant rather than those of \(j_{bias} \). Shown in Fig. 10(c) are \(L_k(\langle j_{bias}, \Gamma, 0 \rangle) \) as functions of \(\Gamma \) for \(j_{bias} = 0 \) (dashed curve) and \(j_{bias} = j_d \) (solid curve). While both the curves quickly increase with \(\Gamma \) and diverge at \(\Gamma = 1/2 \), the difference between the solid and dashed curves is always smaller than factor 1.5. Shown in Fig. 10(d) are \(L_k(\langle j_{bias}, \Gamma, 0 \rangle)/L_k(0, \Gamma, 0) \) as functions of \(j_{bias}/j_d \) for different \(\Gamma \). The blue (\(\Gamma = 0 \)) and red (\(\Gamma = 0.4 \)) curves almost overlap, and the effects of \(j_{bias} \) is less than 1.5 independent of \(\Gamma \). It should be noted that the blue curves in Figs. 10(a), 10(b), and 10(d), which represent the ideal BCS superconductor with \(\Gamma = 0 \), are coincident with the results in the previous study [38].

To understand the nonlinear \(L_k \) for small current regions, we use the approximate formulas, Eqs. (27)–(29). After some calculations, we find (see Appendix D):

\[
L_k(\langle j_{bias}, \Gamma, 0 \rangle) = L_k(0, \Gamma, 0) \left[1 + C_{fm}(j_{bias}/j_d)^2 \right],
\]

(50)

\[
C_{fm} = \frac{3\pi^2 + 16s_{s0}}{12\pi} \left(\Delta_{d0} - \frac{4s_{s0}}{3\pi} \right)^2 = 0.136,
\]

(51)

for \(T = 0 \) and \((j_{bias}/j_d)^2 \ll 1 \). Here \(\Delta_{d0} \) and \(s_{s0} \) are given by Eqs. (37) and (38). The dashed gray line in Fig. 10(d) is calculated from Eq. (50), which agrees well with the exact results (solid curves) at \((j_{bias}/j_d)^2 \ll 1 \). For \(T \approx T_c \), Eq. (49) can be calculated from Eqs. (30)–(32). Hence

\[
L_k(\langle j_{bias}, \Gamma, T \rangle_{T=0}) = \frac{7\xi(3)\mu_0\lambda_0^2}{4\pi^2T_c} \left(1 - \frac{T}{T_c} \right)^{-1} \left(1 - \frac{s_{bias}}{3s_{d}} \right)^{-1} \left(1 - \frac{j_{bias}}{j_d} \right)^2,
\]

(52)

for \(T \approx T_c \). Here \(s_{d} = s_{s0}/3 = (4T_c/3\pi)(1 - T/T_c) \) and Eq. (48) are used. When \(s_{bias} = s_{d} \), we have \(L_k(s_{d}, \Gamma, T)/L_k(0, \Gamma, T)|_{T=T_c} = 1.5 \). The bias momentum parameter \(s_{bias} \) can be converted to \(j_{bias}/j_d \) by using Eqs. (32) and (40). For small current regions, we have \(s_{bias}/s_{d} = (4/27)(j_{bias}/j_d)^2 \) and obtain

\[
L_k(\langle j_{bias}, \Gamma, T \rangle) = L_k(0, \Gamma, T) \left[1 + C_{fm}(j_{bias}/j_d)^2 \right],
\]

(53)

\[
C_{fm} = \frac{4}{27} = 0.148,
\]

(54)

for \(T \approx T_c \) and \((j_{bias}/j_d)^2 \ll 1 \). Equation (53) has the same form as that obtained in the previous study [74] except \(T_c \) and \(j_d \) depend on \(\Gamma \). Note the value of \(C_{fm} \) differs from that of \(C_{fm} \) at \(T = 0 \).

For \(0 < T < T_c \), we use the numerical solutions of Eqs. (2)–(7). Shown in Fig. 11(a) are \(L_k(\langle j_{bias}, \Gamma, T \rangle) \) as functions of \(j_{bias} \) for different \(\Gamma \) and \(T \). The blobs represent the depairing points. Shown in Fig. 11(b) are

FIG. 9. Zero-current kinetic inductance \(L_k(0, \Gamma, T) \) calculated from the formula given by Eq. (44). (a) \(L_k(0, \Gamma, T) \) as functions of \(T \). Here, \(L_k(0, 0, 0) = \mu_0 \lambda_0^2 \). (b) \(L_k(0, \Gamma, T)/L_k(0, \Gamma, 0) \) as functions of the normalized temperature \(T/\Gamma_c \).

FIG. 10. Fast-measurement kinetic inductance \(L_k(j_{bias}, \Gamma, T)_{T=0} \) calculated from the formulas given by Eqs. (21)–(23) and (49). (a) \(L_k(j_{bias}, \Gamma, T)_{T=0} \) as functions of \(j_{bias} \). (b) \(L_k(j_{bias}, \Gamma, T)_{T=0} \) as functions of \(j_{bias}/j_d \). (c) \(L_k(j_{bias}, \Gamma, T)_{T=0} \) as functions of \(\Gamma \) for \(j_{bias} = 0 \) (dashed curve) and \(j_{bias} = j_d \) (solid curve). (d) \(L_k(j_{bias}, \Gamma, 0)/L_k(0, \Gamma, 0) \) as functions of \((j_{bias}/j_d)^2 \). The dashed gray line is calculated from the approximate formulas given by Eq. (50).
FIG. 11. Fast measurement kinetic inductance $L_k(j_{bias}, \Gamma, T)$ for a finite T. (a) $L_k(j_{bias}, \Gamma, T)$ as functions of j_{bias} up to j_d calculated for $\Gamma = 0, 0.1, 0.2, 0.3$ and $T/T_c = 0.2, 0.3, 0.4, 0.5$. The colored blobs are the depairing points. (b) $L_k(j_{bias}, \Gamma, T)/L_k(0, \Gamma, T)$ as functions of $(j_{bias}/j_d)^2$ for $T/T_c = 0.1, 0.95$ and $\Gamma = 0, 0.4$.

$L_k(j_{bias}, \Gamma, T)/L_k(0, \Gamma, T)$ for different Γ and T, which are not sensitive neither to Γ nor T/T_c [see also Fig. 10(d) for $T = 0$]. The similar curves for $\Gamma = 0$ are found in Ref. [38].

3. Current carrying state ($s > 0$): Slow measurement

Consider the other limit, the slow measurement regime [38,74], in which the time-dependent current changes on a timescale much longer than the relaxation time of n_s. In this case, we can assume n_s instantly follows the time dependence of the current: $n_s = n_s(q(t))$. Substituting $n_s = q \dot{n}_s$ into Eq. (43), we find

$$L_k(s, \Gamma, T) = \mu_0 \lambda_0^2 \left[(1 + q \dot{n}_s) \frac{n_s(s, \Gamma, T)}{n_{s0}} \right]^{-1} \tag{55}$$

$$= \mu_0 \lambda_0^2 \sqrt{\frac{\pi}{q}} \left| \frac{\partial (j_s/j_d)}{\partial (q/q_0)} \right|^{-1} \tag{56}$$

where Eq. (56) corresponds with the expression given in Ref. [38].

For $T = 0$, we can evaluate Eq. (56) using the solutions of Eqs. (21)–(23). Shown in Fig. 12(a) are $L_k(j_s, \Gamma, T)_{T=0}$ as functions of j_s, which diverge at $j_s = j_d(\Gamma)$. These divergences come from $\dot{n}_s j_s = 0$ at $j_s = j_d(\Gamma)$ (see also Fig. 5). Shown in Fig. 12(b) are $L_k(j_s, \Gamma, 0)/L_k(0, \Gamma, 0)$ as functions of the normalized current $(j_s/j_d)^2$, which are not sensitive to Γ.

FIG. 12. Slow-measurement kinetic inductance $L_k(j_s, \Gamma, T)_{T=0}$ calculated from the formulas given by Eqs. (21)–(23) and (56). (a) L_k as functions of j_s. (b) L_k normalized with $L_k(j_s = 0)$ as functions of $(j_s/j_d)^2$. The dashed gray line is calculated from the approximate formulas given by Eq. (57).

For small-current regions, we have a useful formula to calculate L_k (see Appendix D),

$$L_k(j_s, \Gamma, 0) = L_k(0, \Gamma, 0) \left[1 + C_{sm} \left(\frac{j_s}{j_d} \right)^2 \right] \tag{57}$$

$$C_{sm} = \frac{(3\pi^2 + 16)s_{d0}}{4\pi} \left(\Delta_{d0} - \frac{4s_{d0}}{3\pi} \right)^2 = 0.544 \tag{58}$$

for $T = 0$ and $(j_s/j_d)^2 \ll 1$. Hence, we have a relation $C_{sm} = 4C_{sm}$ [see Eqs. (50) and (51)]. Shown as the dashed gray line in Fig. 12(b) is the normalized L_k calculated from Eq. (57), which agrees well with the exact results (solid curves) at $(j_s/j_d)^2 \ll 1$.

For $T \simeq T_c$, we use the GL results. Substituting Eq. (32) into Eq. (56), we obtain

$$L_k(s, \Gamma, T) = L_k(0, \Gamma, T) \left(1 - \frac{s}{s_d} \right)^{-1} \tag{59}$$

When $s \ll s_d$, we have $s/s_d = (4/9) (j_s/j_d)^2$ and obtain

$$L_k(s, \Gamma, T) = L_k(0, \Gamma, T) \left[1 + C_{sm}^{GL} \left(\frac{j_s}{j_d} \right)^2 \right] \tag{60}$$

$$C_{sm}^{GL} = \frac{4}{9} = 0.444 \tag{61}$$

for $T \simeq T_c$ and $(j_s/j_d)^2 \ll 1$. We find C_{sm} for $T \simeq T_c$ is smaller than that at $T = 0$. Equation (60) has the same form as the well-known result [74] except T and j_d depend on Γ.

For $0 < T < T_c$, we use the numerical solutions of Eqs. (2)–(7). Shown in Fig. 13(a) are $L_k(j_s, \Gamma, T)$ as functions of j_s for different Γ and T, which increase with j_s and diverge at $j_s = j_d(\Gamma)$, $\Gamma = 1/2$, and $T = T_c(\Gamma)$. Shown in Fig. 13(b) are $L_k(j_s, \Gamma, T)/L_k(0, \Gamma, T)$ as functions of $(j_s/j_d)^2$ for different Γ and T, sensitive neither to Γ nor T. This insensitivity resembles that for the fast measurement case [see also Fig. 11(b)]. See also Ref. [38] for $\Gamma = 0$.

V. SEMI-INFINITE SUPERCONDUCTOR

In this section, we consider the geometry shown in Fig. 2(b): a semi-infinite superconductor occupying $x \geq 0$. We calculate the current distribution and the superheating field.
In the Meissner state, the current distributes within the depth \(\sim \lambda \) from the surface. When the superfluid flow is small (\(|q| \ll q_d\)), the pair-breaking effect due to a finite \(q \) is negligible and the distributions of the current \(j_s(x) \) and the magnetic field \(H(x) \) obey the London equation. As \(|q| \) increases, the London equation ceases to be valid due to the current-induced pair-breaking effect (nonlinear Meissner effect [17,76]). To obtain the current and field distributions, we need the self-consistent solutions of the coupled Maxwell and Usadel equations, Eqs. (2)–(10).

Let us consider the simplest case: \(T = 0 \) and \(\Gamma = 0 \). For \(H_0 \rightarrow 0 \), we can use the London equation, which gives \(H(x) = j_s(x) / j_0 = H_0 / H_{c0} \exp(-x / \lambda_0) \); the curves for \(H(x) / H_{c0} \) and \(j_s(x) / j_0 \) completely overlap. Shown in Fig. 14(a) are \(H(x) \) and \(j_s(x) \) as functions of \(x \) for different \(H_0 \) calculated from the self-consistent solutions of Eqs. (2)–(10). For small \(H_0 \) regions, in fact, \(H(x) / H_{c0} \) (solid curves) and \(j_s(x) / j_0 \) (dashed curves) almost overlap, expected from the London equation. However, as \(H_0 \) increases, the dashed curves deviate from the solid curves in the vicinity of the surface: the nonlinear Meissner effect manifests itself. Shown in Fig. 14(b) are \(\Delta(x) \) and \(\lambda(x) \), which differ from the zero-current values \(\Delta_0 \) and \(\lambda_0 \) at \(x < \lambda \) but approach \(\Delta_0 \) and \(\lambda_0 \) as \(x \) increases.

The superheating field \(H_{\text{sh}} \) is given by the value of \(H_0 \) which induces \(j_s(x_0) = j_d \). Here \(x_0 \) is the depth at which the distribution \(j_s(x) \) takes the maximum. Note here it is not necessarily the case that we have \(x_0 = 0 \). For instance, in the multilayer structure [11,53,77–79] or a superconductor including inhomogeneous impurities in the vicinity of the surface [11,42,53], the surface current can be suppressed, and \(j_s(x) \) takes the maximum at the inside \((x_0 > 0) \).

In our semi-infinite superconductor, the current is a monotonically decreasing function of \(x \) as shown in Fig. 14(a). Hence, \(x_0 = 0 \). In this case, we can derive a simple formula of \(H_{\text{sh}} \). Integrating both the sides of Eq. (8) from \(x = 0 \) to \(\infty \), we obtain \(\int_0^\infty qd\chi^2(s, \Gamma, T) dx \). Then, using Eqs. (9) and (10), we find the relation between the applied magnetic field \(H_0 \) and the superfluid flow at the surface \(s(0) \):

\[
\frac{H_0^2}{H_{c0}^2} = \int_0^{s(0)} \frac{\pi \lambda_0^2 ds}{\lambda^2(s, \Gamma, T)} = \pi \int_0^{s(0)} \frac{n_s(s, \Gamma, T)}{n_0}. \tag{62}
\]

\(H_{\text{sh}} \) can be calculated by substituting \(s(0) = s_d \):

\[
H_{\text{sh}}(\Gamma, T) = H_{c0} \left(1 - \frac{2}{3} \left(\frac{\pi z_d}{\Gamma} \right)^2 e^{-\frac{\pi z_d}{\Gamma}} \right) e^{-\frac{\pi z_d}{\Gamma}}. \tag{63}
\]

\(\Gamma \), and \(\Gamma \) are given by Eqs. (34) and (35). For the ideal dirty BCS superconductor \((\Gamma = 0) \), we have \(z_d = \frac{1}{\zeta_0} \) and

\[
H_{\text{sh}}(0, 0) = H_{c0} \left(1 - \left(1 - \frac{\pi \zeta_0}{2} \right) e^{-\frac{\pi \zeta_0}{2}} \right) e^{-\frac{\pi \zeta_0}{2}} = \frac{1}{3} \frac{\sqrt{\pi}}{\sqrt{\pi}}. \tag{67}
\]

This is slightly smaller than the clean-limit value, \(H_{\text{sh}}(0, 0) = 0.84H_{c0} \) [39,40], and is consistent with the previous study [41], in which \(H_{\text{sh}} \) takes the maximum at the mean free path \((\text{mfp}) = 5.325 \zeta_0 \) and decreases with mfp.

For \(T \simeq T_c \), we use the GL results. Substituting Eqs. (30) and (31) into Eq. (63) and using the depairing value of the \(s \) parameter in the GL regime, \(s_d(\Gamma, T) = s_m / 3 = (4T_c / 3\pi)(1 - T / T_c) \), we obtain

\[
H_{\text{sh}}(\Gamma, T) |_{T = T_c} = \frac{\sqrt{\pi}}{3} H_c(\Gamma, T) = 0.745H_c(\Gamma, T). \tag{68}
\]
The coefficient is independent of Γ and coincident with the well-known GL result obtained for $\Gamma = 0$ \cite{80,81}.

For $0 < T < T_c$, we use the numerical solutions of $n_s(s, \Gamma, T)$ and $s_T(s, \Gamma, T)$ [see Fig. 6(b)]. Shown as the solid curves in Fig. 16(a) is $H_{sh}(\Gamma, T)$ as functions of T/T_c. We find H_{sh} is a monotonically decreasing function of Γ and T. Shown as the dashed curves in Fig. 16(a) is $H_{sh}(\Gamma, T)$ normalized by $H_c(\Gamma, T)$. The curves merge at $T \to T_c$ and reproduce the GL coefficient $\sqrt{3}/3$. It is often useful to plot H_{sh} as functions of $(T/T_c)^2$ (see, e.g., Ref. [29]). Shown in Fig. 16(b) is H_{sh} as functions of $(T/T_c)^2$. The slope of H_{sh} is steeper than $[1 - (T/T_c)^2]$ and decreases as Γ increases.

VI. DISCUSSIONS

In Sec. III, we have investigated a disordered superconductor with a finite Dynes Γ parameter by solving the Usadel equation. We have calculated $\Delta(s, \Gamma, T)$, $n_s(s, \Gamma, T)$, $\lambda(s, \Gamma, T)$, and $j_{sd}(s, \Gamma, T)$ for all T, all Γ, and all superfluid flow parameters $s \propto q^2$. Besides, we have derived the formulas of Δ, n_s, λ, and j_{sd} at $T = 0$, taking the effects of Γ into account [Eqs. (21)–(29)]. The formulas for $T \simeq T_c$ have also been obtained, which have similar forms as the usual GL results except that T_c depends on Γ. Using these results, we have investigated a narrow thin-film in Sec. IV and a semi-infinite superconductor in Sec. V. In the following, we summarize the results and discuss their implications.

A. Depairing current density

In Sec. IV A, we have calculated the depairing current density $j_{sd}(\Gamma, T)$ for all T and all Γ (see Fig. 8). Also, we have derived the analytical formulas for j_{sd} valid for $T = 0$ and $\Gamma \ll 1$ [see Eqs. (33)–(39)]. The formulas for $T \simeq T_c$ have a similar form as the well-known GL depairing current except that T_c depends on Γ [see Eqs. (40)–(42)].

Our results show that j_{sd} is given by the KLM theory for $\Gamma = 0$ and decreases as Γ increases. Hence, we can expect that real materials, which usually have $\Gamma > 0$, exhibit smaller j_{sd} than the ideal KLM value. The previous measurements do not contradict this expectation, but the correlation between j_{sd} and Γ is still unclear. Simultaneous measurements of j_{sd} and Γ can provide with a deeper insight into observed values of j_{sd}.

While materials mechanisms behind Γ are not well understood, it would be possible to engineer Γ by combining tunnel measurements and various materials processing. Finding a better materials processing method which can reduce Γ, we can ameliorate j_{sd}.

In SNSPD, the detection efficiency (DE) depends on the bias current j_{bias}/j_d. Then, an increase or decrease of j_d via a Γ engineering (see Fig. 7) would result in a shift of the necessary dc bias. For instance, when $\Gamma = 0.1$, we have more than 10% degradation of T_c and 30% degradation of j_d compared with the ideal BCS superconductor, which would reduce the necessary dc bias by 30%. Simultaneous measurements of Γ, j_d, and DE before and after materials treatments (e.g., ion irradiation [82]) can test the theory.

B. Kinetic inductance

In Sec. IV B 1, we have derived the zero-current kinetic inductance formula, Eq. (44). By using this formula, we have calculated $L_k(0, \Gamma, T)$ for all T and all Γ. Our results show that Γ affects the T dependence of $L_k(0, \Gamma, T)/L_k(0, \Gamma, 0)$, as shown in Fig. 9(b). Simultaneous measurements of Γ and the zero-current kinetic inductance for different T can confirm the theoretical prediction.

In Secs. IV B 2 and IV B 3, we have numerically calculated the current-dependent nonlinear kinetic inductance in the fast- and slow-measurement regimes for all T, all Γ, and all currents up to j_d (see Figs. 11 and 13). In the fast measurement regime, the current-induced increase of $L_k(j_{bias}, \Gamma, T)/L_k(0, \Gamma, T)$ is at most ≈ 1.5 even at j_d. The coefficient of the quadratic expansion at $T = 0$ is $C_{im} = 0.136$ [see Eq. (50)]. On the other hand, in the slow measurement regime, L_k diverges at j_d, and the coefficient of the quadratic expansion at $T = 0$ is given by $C_{im} = 4C_{im} = 0.544$ [see Eq. (57)]. The difference between the fast- and slow-measurement results would be detectable in experiments. The effects of Γ on C_{im} and C_{im} are not significant. To test the theory, measurements of the current-dependent nonlinear kinetic inductance should be combined with a measurement of j_d and tunneling spectroscopy to extract Γ.

Also, our theory suggests that it would be possible to tune L_k by engineering Γ as well as by the dc or ac current and controlling T. While L_k always increases with the bias current and Γ, the dissipative conductivity σ_i can be smaller than that of the ideal BCS superconductor by tuning the dc bias and Γ (see Fig. 7 in Ref. [54]). Then, we can simultaneously increase L_k and reduce σ_i (e.g., $\Gamma = 0.05$ and $j_d \ll j_d$ lead to 10% increase of L_k and 20% reduction of σ_i [9,52,54]). These results might be useful for developing superconducting circuit elements (e.g., superinductor [83]).

C. Superheating field

In Sec. V, we derived the general formula of the superheating field for a disordered superconductor H_{sh}, taking the effects of Γ into account [see Eq. (63)]. Using this formula, we have calculated $H_{sh}(\Gamma, T)$ for all T and all Γ. A simple analytical formula for $T = 0$ and $\Gamma \ll 1$ is also derived, which is given by Eq. (64). For the ideal dirty BCS superconductor with $\Gamma = 0$, we have obtained $H_{sh}(0, 0) = 0.795H_0$ at $T = 0$.
which is slightly smaller than $H_{c1}^{\text{clean}} = 0.84H_{c1}$ for a clean limit superconductor with a large λ/ξ [39,40] and consistent with the previous study [41] in which H_{c1} decreases with mfp when mfp $< 5.32\xi$.

According to our results, we can expect that the maximum operating field of an SRF cavity made from a homogeneous dirty BCS superconductor with $\Gamma = 0$ is given by $H_{c1}(0,0) = 0.795H_{c1}$. Taking dirty Nb materials, for example, $\mu_0H_{c1} = 200$ mT yields $\mu_0H_{c1}(0,0) = 160$ mT, which translates into the accelerating field $E_{\text{acc}} = 37$ MV/m for the Tesla-shaped SRF cavity. This can be tested by measuring quench fields of impurity-doped dirty Nb cavities with mfp $\ll \xi$. It should be noted that H_{c1} can increase as impurities decreases [41], then materials with mfp $\sim \xi$ [31–35] can have slightly higher H_{c1} than 0.795H_{c1}.

Strong local heating (and resultant quenches) of SRF cavities are often attributed to geometrical defects on the surface [84–92]. Our theory suggests there can be another source of local heating. Since real materials have a finite Γ [44,45] and $H_{c1}(\Gamma,0) < H_{c1}(0,0)$, an area with a large surface on the inner surface can be a hot spot even when $H_0 \ll H_{c1}(0,0)$. For instance, H_{c1} at an area with $\Gamma = 0.3$ on the surface of Nb3Sn can be estimated as $\mu_0H_{c1} = 160$ mT at $\Gamma = 0$ from Fig. 15, which is much smaller than the ideal value $\mu_0H_{c1}(0,0) = 430$ mT. Here $\mu_0H_{c1} = 540$ mT is used. Taking another example, H_{c1} at an area with $\Gamma = 0.15$ on the surface of disordered Nb materials can be estimated as $\mu_0H_{c1} = 110$ mT at $\Gamma = 0$, which is smaller than the ideal dirty Nb by 30%. Such an area with $\Gamma > 0$ can be a source of local heating and may cause quenches. Simultaneous measurements of an onset field of local heating and Γ at the hot spot can test the theory. Materials processing that can reduce Γ would improve the accelerating field of SRF cavities.

The multilayer structure [11,53,77–79] or a superconductor including inhomogeneous impurities in the vicinity of the surface [11,42,53] can suppress the surface current and enhance H_{c1}. The formula of H_{c1} given by Eq. (63) is not applicable to these structures because $j_1(x)$ takes the maximum at the inside ($x_0 > 0$). Study on effects of Γ on H_{c1} in these structures would be useful for comparison of the theory and experiments [93–107].

The lower critical field H_{c1} is also one of the important quantities in SRF. Above H_{c1}, the Meissner state is metastable up to H_{c1} and superconductors can transition to the vortex state. To investigate effects of Γ and other pair breakers on H_{c1} can be future work.

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to Alex Gurevich for his hospitality during my visit to Old Dominion University. This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grants No. JP17H04839, No. JP17KK0100, and No. JP19H04395.

APPENDIX A: DERIVATIONS OF EQS. (14), (16), and (17)

The θ parameter of the Matsubara Green’s function for the zero-current state is given by

$$u = \cot \theta = \frac{\omega_n + \Gamma}{\Delta}.$$ \hfill (A1)

Then the self-consistency equation at $T = 0$ can be written as

$$0 = \lim_{M \to \infty} \left[\int_{\Gamma/\Delta}^{(M+\Gamma)/\Delta} \frac{du}{\sqrt{1 + u^2}} - \int_{0}^{M} \frac{d\omega}{\sqrt{\omega^2 + 1}} \right]$$

$$= \lim_{M \to \infty} \left(\sinh^{-1} \frac{M + \Gamma}{\Delta} - \sinh^{-1} \frac{M - \sinh^{-1} \frac{\Gamma}{\Delta}}{\Delta} \right)$$

$$= - \ln \Delta - \sinh^{-1} \frac{\Gamma}{\Delta}, \quad (A2)$$

resulting in Eq. (14). Here, the Matsubara sum $\int_{0}^{M} d\omega$ and $d\omega = \Delta du$ and $\sinh^{-1} \frac{M}{\Delta} = \ln M (M \to \infty)$ are used.

The thermodynamic critical field can be calculated from Eqs. (4) and (5). At $T = 0$, we find

$$\Omega(0, \Gamma, 0) = -N_0 \Delta^2 \lim_{M \to \infty} \int_{\Gamma/\Delta}^{(M+\Gamma)/\Delta} d\left[\frac{1}{\sqrt{1 + u^2}} \right]$$

$$+ \frac{2\mu^2}{\sqrt{1 + u^2}} - 2\mu$$

$$= -N_0 \Delta^2 \lim_{M \to \infty} \left[-u^2 + u\sqrt{1 + u^2} \right]^{(M+\Gamma)/\Delta}_{\Gamma/\Delta}$$

$$= -\frac{1}{2} N_0 \Delta^2 \left(1 + 2\frac{\mu^2}{\Delta^2} - 2\frac{\Gamma^2}{\Delta^2} \right)$$

$$= \Delta \left(1 - \frac{2\tan^{-1} \frac{\Gamma}{\Delta}}{\pi} \right), \quad (A3)$$

resulting in Eq. (16).

The superfluid density can calculated from Eq. (6). At $T = 0$, we have

$$\frac{n_s(0, 0, \Gamma, 0)}{n_{s0}} = \frac{\lambda^2(0, 0, \Gamma, 0)}{\lambda^2(0, 0, 0)} = \frac{2}{\pi} \int_{\Gamma/\Delta}^{\infty} d\omega$$

$$= \frac{2\Delta}{\pi} \int_{\Gamma/\Delta}^{\infty} \frac{du}{\sqrt{1 + u^2}}$$

$$= \Delta \left(1 - \frac{2\tan^{-1} \frac{\Gamma}{\Delta}}{\pi} \right). \quad (A4)$$

namely, Eq. (17).

APPENDIX B: DERIVATIONS OF EQS. (21) and (22)

Generalizing the procedures in Appendix A, we can derive Eqs. (21) and (22). The Matsubara Green’s function $u = \cot \theta$ for the current carrying state satisfies

$$\left(1 - \frac{\zeta}{\sqrt{1 + u^2}} \right) u = \frac{\omega_n + \Gamma}{\Delta}, \quad (B1)$$

where $\zeta = s/\Delta$. The self-consistency equation at $T = 0$ is given by

$$0 = \int_{0}^{\infty} d\omega \left(\frac{1}{\Delta \sqrt{1 + u^2}} - \frac{1}{\sqrt{\omega^2 + 1}} \right)$$

$$= \int_{u_0}^{\infty} du \left(1 - \frac{\zeta}{(1 + u^2)^{3/2}} \right) \left(\frac{1}{\sqrt{1 + u^2}} - \frac{1}{\sqrt{\Delta^{-2} + [(1 - \zeta/\sqrt{1 + u^2})^2 - \Gamma^2/\Delta^2]} \right)$$

$$= - \ln \Delta - \sinh^{-1} u_0 - \frac{\zeta}{2} \left(\frac{\pi}{2} - \tan^{-1} u_0 - \frac{u_0}{1 + u_0^2} \right) \quad (B2)$$
resulting in Eq. (21). Here \(u_0(s, \Gamma) \) is defined by \((1 - \zeta / \sqrt{1 + u_0^2}) u_0 = \Gamma / \Delta \).

The superfluid density can calculated from Eq. (6). At \(T = 0 \), we find

\[
\frac{n_s(s, \Gamma, 0)}{n_{\phi}^0} = \frac{\Delta^2}{\lambda^2(s, \Gamma, 0)} = \frac{2}{\pi} \int_0^\infty \frac{d\omega}{1 + u^2} \int_0^\infty \frac{d\omega}{1 + u^2} - \frac{\zeta}{(1 + u^2)^{3/2}} + \frac{\zeta u^2}{(1 + u^2)^{3/2}} = \Delta \left[1 - \frac{2}{\pi} \tan^{-1} u_0 - 4\zeta \frac{u_0(3 + 2u_0^2)}{2(1 + u_0^2)^2} \right].
\]

(B3)

This is Eq. (22).

APPENDIX C: DERIVATIONS OF EQUATIONS (33)-(39)

For \(\Gamma \ll \Delta(s, \Gamma, 0) - s \), we can calculate \(j_d \) from Eqs. (24)-(26), which maximizes the current-momentum relation, Eq. (29), so that \(\partial j_d / \partial s = 0 \):

\[
\left(\frac{\pi}{4} - \zeta_d - \frac{\Gamma}{2\Delta_0} \right) \left(1 - \frac{\pi}{4} \zeta_d - \frac{\Gamma}{\Delta_0} \right) = \frac{\pi^2}{8} \zeta_d,
\]

(C1)

\[
\Delta_d = \exp \left[-\frac{\pi}{4} \zeta_d - \frac{\Gamma}{\Delta_d} \right],
\]

(C2)

\[
\zeta_d = \frac{s_d}{\Delta_d}.
\]

(C3)

Here \(\partial \Delta / \partial s = -(\pi / 4) \left(1 - (\pi / 4)(s / \Delta) - \Gamma / \Delta \right)^{-1} \) is used. Then the maximum value of \(j_d \) is given by

\[
j_d (\Gamma, T)_{T \to 0} = \sqrt{4\pi s_d} \left[\Delta_d - \frac{4s_d}{3\pi} - \frac{2\Gamma}{\pi} \right] H_{\phi,0}^2 / \lambda_0^2.
\]

(C4)

which is the depairing current density.

For \(\Gamma = 0 \), Eq. (C1) is a simple quadratic equation for \(\zeta_d \).

Then the solution is given by

\[
\zeta_0 = \frac{2\pi}{\pi} + \frac{3\pi}{8} - \sqrt{\left(\frac{2\pi}{\pi} + \frac{3\pi}{8} \right)^2} - 1 = 0.300.
\]

(C5)

\[
\Delta_0 = \exp \left[-\frac{\pi}{4} \zeta_0 \right] = 0.790.
\]

(C6)

\[
s_0 = \Delta_0 \zeta_0 = 0.237,
\]

(C7)

resulting in \(j_d(0, 0) = 0.595 H_{\phi,0} / \lambda_0 \), the well-known result obtained by Maki [13,14] and Kupriyanov and Lukichev [36].

For \(0 \leq \Gamma \ll 1 \), we can solve Eq. (C1) by expanding \(\zeta_d \) about \(\zeta_0 \). Substituting

\[
\zeta_d = \zeta_0 - \alpha \frac{\Gamma}{\Delta_0}
\]

(C8)

into Eq. (C1), we find

\[
\alpha = \frac{1 + \pi / 2 - 2(1 + 8\pi / \pi) \zeta_0}{2 + 3\pi / 2 - 8 - \pi \zeta_0} = 0.365.
\]

(C9)

Then Eqs. (C2) and (C3) result in

\[
\Delta_d = e^{-\frac{\pi}{4} \zeta_0 - \frac{\Gamma}{\Delta_0}} = \Delta_0 \exp \left[-\frac{\pi}{4} \alpha \zeta_0 - \frac{\Gamma}{\Delta_0} \right].
\]

(C10)

\[
s_d = \Delta_d \zeta_d = \left(s_0 - \alpha \Gamma \right) \exp \left[-\frac{\pi}{4} \alpha \zeta_0 - \frac{\Gamma}{\Delta_0} \right].
\]

(C11)

APPENDIX D: DERIVATIONS OF EQUATIONS (50) AND (57)

1. **Fast measurement**

For \(s \ll 1 \) and \(\Gamma \ll 1 \), the superfluid density is given by Eq. (28). Then, Eq. (49) yields

\[
\frac{L_d (s_{bias}, \Gamma, 0)}{L_{d,0}} = 1 + \left(1 + \frac{2}{\pi} \right) \Gamma + \left(\frac{\pi}{4} + \frac{4}{3\pi} \right) s_{bias}.
\]

(D1)

Here the current-momentum relation, Eq. (29), can be written as

\[
s_{bias} = \frac{1}{\pi} \left(\frac{j_{bias}}{j_{d,0}} \right)^2 = \frac{1}{\pi} \left(\frac{j_d}{j_{d,0}} \right)^2 \frac{j_{bias}}{j_d}.
\]

(D2)

Substituting Eq. (D3) into Eq. (D2), we find

\[
\frac{L_d (s_{bias}, \Gamma, 0)}{L_d (0, \Gamma, 0)} = 1 + C_{s\Gamma} \left(\frac{j_{bias}}{j_d} \right)^2,
\]

(D4)

\[
C_{s\Gamma} = \frac{3\pi^2 + 16}{12\pi} s_{d,0} \Delta_0 \left(\frac{4s_{d,0}}{3\pi} \right)^2 = 0.136.
\]

(D5)

2. **Slow measurement**

Substituting the superfluid density, Eq. (28), for \(s \ll 1 \) and \(\Gamma \ll 1 \) into Eq. (55), we obtain

\[
\frac{L_d (s_{bias}, \Gamma, 0)}{L_{d,0}} = 1 + \left(1 + \frac{2}{\pi} \right) \Gamma + 3 \left(\frac{\pi}{4} + \frac{4}{3\pi} \right) s,
\]

(D6)

then

\[
\frac{L_d (s, \Gamma, 0)}{L_d (0, \Gamma, 0)} = 1 + C_{s\Gamma} \left(\frac{j_s}{j_d} \right)^2,
\]

(D7)

\[
C_{s\Gamma} = \frac{3\pi^2 + 16}{4\pi} s_{d,0} \Delta_0 \left(\frac{4s_{d,0}}{3\pi} \right)^2 = 0.544.
\]

(D8)

APPENDIX E: DERIVATIONS OF EQUATION (64)

To evaluate Eq. (63) for small \(\Gamma \) regions, we rewrite Eqs. (24) and (25) in more convenient forms. Let us expand \(\Delta(s, \Gamma, 0) \) around \(\Delta(s, 0, 0) \) and write

\[
\Delta(s, \Gamma, 0) = \Delta(s, 0, 0) - \beta \Gamma.
\]

(E1)
Substituting Eq. (E1) into Eq. (24), we find

$$\beta = \left(1 - \frac{\pi s}{4\Delta(s, 0, 0)}\right)^{-1}. \quad (E2)$$

Then Eq. (25) yields

$$n_s(s, \Gamma, 0) = \Delta(s, 0, 0) - \frac{\Gamma}{1 - \frac{8s}{4\Delta(s, 0, 0)}} - \frac{2\Gamma}{3\pi} - 2\Gamma. \quad (E3)$$

Now Eq. (63) reduces to

$$\left(\frac{H_{sl}(\Gamma, 0)}{H_0}\right)^2 = \pi \int_0^{s_0} \left[\Delta(s, 0, 0) - \frac{\Gamma}{1 - \frac{8s}{4\Delta(s, 0, 0)}}\right] ds - \frac{2}{3} s_d^2 - 2\Gamma s_d. \quad (E4)$$

Here s_d is given by Eq. (C11). To perform the integration, we change the variable from s to $z = s/\Delta(s, 0, 0)$. Using $d\Delta(s, 0, 0)/ds = -(\pi/4)[1 - \pi s/4\Delta(s, 0, 0)]^{-1}$ and $\Delta(s, 0, 0) = e^{-\pi z/4}$, we find $ds = dz/(dz/ds) = e^{-\pi z/4}(1 - \pi z/4)dz$. Then the integration becomes

$$\int_0^{s_d} \left[\Delta(s, 0, 0) - \frac{\Gamma}{1 - \frac{8s}{4\Delta(s, 0, 0)}}\right] ds = \int_0^{\pi/4} \left[e^{-\pi z/4} - \frac{\Gamma}{4} - e^{-\pi z/4}\right] dz = \frac{1}{\pi} \left[1 - \frac{\pi z}{4}\right] e^{-\pi z/4} - 4\Gamma(1 - e^{-\pi z/4}) \right]. \quad (E5)$$

where $z_d = s_d/\Delta(s_d, 0, 0)$. To obtain z_d, we expand $\Delta(s_d, 0, 0)$ around $\Delta_d = \Delta(s_d, \Gamma, 0)$:

$$\Delta(s_d, 0, 0) = \Delta_d + z_d. \quad (E6)$$

Here Δ_d is given by Eq. (C10). Substituting Eq. (E5) into $\Delta(s_d, 0, 0) = \exp[-\pi s_d/\Delta(s_d, 0, 0)]$ and using $\Delta_d = \exp[-\pi s_d/\Delta_d - \Gamma/\Delta_d]$, we find

$$\eta = \left(1 - \frac{\pi z_d}{4}\right)^{-1}, \quad (E7)$$

where $z_d = s_d/\Delta_d$ is given by Eq. (C8). Then we find

$$z_d = \frac{s_d}{\Delta_d + \eta \Gamma} = \frac{1 - \frac{\pi z_d}{4}}{1 - \frac{\pi z_d}{4} + \frac{\pi z_d}{\Delta_d}}. \quad (E8)$$